Structured low rank decomposition of multivariate Hankel matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank Aggregation via Low-Rank and Structured-Sparse Decomposition

Rank aggregation, which combines multiple individual rank lists to obtain a better one, is a fundamental technique in various applications such as meta-search and recommendation systems. Most existing rank aggregation methods blindly combine multiple rank lists with possibly considerable noises, which often degrades their performances. In this paper, we propose a new model for robust rank aggre...

متن کامل

Unitary rank structured matrices

In this paper we describe how one can represent a unitary rank structured matrix in an efficient way as a product of unitary or Givens transformations. We provide also some basic operations for manipulating the representation, such as the transition to zerocreating form, the transition to a unitary/Givens-weight representation, as well as an internal pull-through process of the two branches of ...

متن کامل

A Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices

Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...

متن کامل

Decomposing multivariate polynomials with structured low-rank matrix completion

We are focused on numerical methods for decomposing a multivariate polynomial as a sum of univariate polynomials in linear forms. The main tool is the recent result on correspondence between the Waring rank of a homogeneous polynomial and the rank of a partially known quasi-Hankel matrix constructed from the coefficients of the polynomial. Based on this correspondence, we show that the original...

متن کامل

A Hierarchical Singular Value Decomposition Algorithm for Low Rank Matrices

Singular value decomposition (SVD) is a widely used technique for dimensionality reduction and computation of basis vectors. In many applications, especially in fluid mechanics, the matrices are dense, but low-rank matrices. In these cases, a truncated SVD corresponding to the most significant singular values is sufficient. In this paper, we propose a tree based merge-and-truncate algorithm to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2018

ISSN: 0024-3795

DOI: 10.1016/j.laa.2017.04.015